RESPONSE OF MULTILAYERED COMPOSITE LAMINATES TO DYNAMIC
SURFACE LOADS

Shyh-Shiuh Lih
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109-8099, U.SA.

Ajit K. Ma
Mechanical, Aerospace and Nuclear Engineering Department

University of California, | .os Angeles
Los Angeles, CA 90095 — 1597, U.S.A.

ABSTRACT

A theoretical investigation of the response of multilayered composite laminates to
concentrated and distributed dynamic surface loadsis carried out. Each layer of the laminate
Is assumed to be transversely isotropic and dissipative with arbitrarily y oriented symmetry axis.
The dissipative property of the material is modeled approximately through the introduction of
afrequency dependent damping function. A multiple transform technique is used to calculate
the spectra and time histories of the displacements and stresses produced by a variety of dynamic
loads, and the quantitative features of the waves produced in the laminate are determined. The
methodology developed in this work is expected to be useful in the prediction of the response
of composite laminates to impact loads and also in the characterization of acoustic emission (AE)

sources in these materials under static and dynamic loads.




I. INTRODUCTION

It iswell known that laminated composites often suffer significant internal damage when
they are subjected to localized dynamic surface loads. The damage may involve fiber breakage
and debonding as well as delamination between the individual Jaminae. Such damage has been
observed to occur even at relatively low impact speeds resulting in a severe loss in the load
carrying capacity of the laminae. While the damage is caused by the stresses which develop
within the material, the precise nature of these stresses and their relationship to the degree and
mode of the damage are not clearly understood at present. This is particularly true in the
dynamic case where the stresses are caused by waves whose propagation characteristics are
strongly influenced by the inherent anisotropy and heterogeneity of the composite material.

With the increasing use of advanced composites in a variety of modem applications, it
has become necessary to employ reliable and effective nondestructive evaluation (NDE) methods
to determine the integrity and serviceability of structural composites. Conventional ultrasonic
NDE methods, e.g., through-transmission and pulse-echo, based on longitudina waves, have
been effective in detecting relatively large isolated flaws that are parallel to the surfaces of the
laminate, but these methods are less useful in detecting and characterizing other common defects,
e.g. , transverse cracks and partial delamination. The use of ultrasonic experiments consisting
of guided waves and contact type transducers have the potential to provide more powerful
nondestructive characterization methods for composites. However, the wave phenomena
associated with these methods are less well understood than those associated with the
conventional techniques and the realization of the full potential of these newer techniques will

require a deeper understanding of the of the wave phenomena than is available at present.




The response of plates to dynamic loads has been studied theoretically by many authors
in the past. In much of the early work quasi-static and approximate plate theories have been
used[see e.g., Chow (1971); Moon(1973); Sun and Tan (1984); Lal (1984)]. When a composite
laminate is subjected to low velocity impact, the generated wavelengths are long compared with
its overal dimensions, and the quasistatic and thin plate approximation may be used in stress
and ysiswith useful results. However, for high speed impact as in ultrasonic nondestructive
inspection of structural components, the loading rate is several orders of magnitude higher than
that for low-velocity impact and the wavel engths a1 e comparable to the thickness of the
individual laminae. It is clear that neither quasi-static approximations, nor thin plate theories
are adequate in analyzing these problems [Lib and Mal (1995)]. Moreover, there is increasing
interest in the use of thicker laminatesin avariety of structural applications where the thin plate
assumption may not be justified, even for low velocity impact, and where contact type
transducers may be needed to increase penetration depth of the waves. A full elastodynamic
theory needs to be employed in the solution of the problem in order to obtain accurate estimates
of the wave field.  Such solutions for the isotropic and quasi-isotropic (i. e., transversely
isotropic with symmetry axis normal to the plate surface) cases have aso been obtained [e.g.
Ceranoglu and Pao (1981), Weaver and Pao (1982), Vasudevan and Mal (1985). The
elastodynamic response of a unidirectional composite laminate has been solved by Mal and Lih
(1992) and by Liu and Achenbach (1994). To the authors' knowledge, the exact solution of the
response of multilayered composite laminatesto localized dynamic loads has not appeared in the
literature. Although the finite element method has the potential to handle these problems, and

amumber of codes are currently avaliable [e. g., DYNA3D], the applicability of these codes has




so far been restricted due to the enormous amount of computing effort required in dealing with
realistic problems and to the difficulty in giving physical interpretation to the numerical results
aswell asin accounting for the radiated energy for problemsinvolving propagation in extended
media

In this paper amultitransform technique coupled with the global matrix method developed
by Ma] (1988) is used to calculate the displacement and stress fields in a multilayered composite

laminate due to a concentrated or distributed dynamic surface load.

11. MATERIAL MODELING

Each lamina in the multilayered composite is modeled as a transversely isotropic and
dissipative material (Mal, Bar-Cohen, and Lib, 1992). We assume at the beginning that the time
dependence of the field variablesis of theform e-i’”. Solution to problems with arbitrary time
dependence can be obtained in a straight forward manner by Fourier inversion of the frequency
domain results.  In the frequency domain the linear constitutive equation of the transversely

isotropic material with its symmetry axis along the xl-axis can be expressed in the form

; 0
0 0 Cy 0 01,y u,
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where Cyy = (Cy, — C3)/2,0;isthe Cauchy’s stress tensor, ¥ is the displacement vector and

Cyy, Cp, Gy, Gy, Css are the five independent complex stiffness constants of the material.

Following Mal, Bar-Cohen and Lih (1991), we assume that the complex stiffness

constants C, are related to the real stiffness constantsc;; of the material through

A = a lQ + ipfaja), A - %I[Q + iplafa,), B
Ay = ay [(1 4 ip\agay), A, = a, (1 + ipfada,), A; = a; [(1+ip)
where
C C C,,+C C C
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p P p P p

and ais similarly related to ¢;. The damping function p is of the form

p = poll + ao(]o— - D - f) (3)
wheref = w/27 isthe frequency m cycles, H(y) isthe Heaviside step function, and Pe a,, f. are
constants which determine the degree of decay in the amplitude of the waves with propagation
distance. Thefirst term in the right hand side of (3) represents dissipation due to internal
friction and other thermodynamic effects, while the second term represents the attenuation

caused by wave scattering by the fibers and other inhornogeneities in the material.

I11. SOLUTION OF THE DYNAMIC SURFACE LOAD PROBLEM
Consider a multilayered composite laminate of infinite lateral dimensions consisting of

N laminae and total thickness H subjected to the surface loading fiX;, X,, ) as shown in Fig. 1.
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A global coordinate system X(X,, X,, X5) with origin on the top surface of the laminate and an

auxiliary local coordinate system X(x,, X,, X,) in each lamina with the xl-axis along the fiber

direction and x;-axis coincident with the global X 3-axis are introduced. The fiber direction in

the mth lamina makes an angle ¢” with the Xl-axis and the thickness of the mth lamina is h“.

The displacement and stress components in the m* lamina are denoted by %" and 05" in the

global coordinate system and by #™ and &;” in the local coordinate system. Then the

displacements and stresses in the local and global coordinate systems are related by

where

L“J-|s ¢ o, IL" -] ¢?
cs -Csct - s

~ m

O
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and ¢ = cos(¢™) s = sin(¢™). Assuming that fiX., X,, ») is the Fourier time transform of the

surface loading (X, X,, ?) and denoting the Fourier time transform of the displacement and the

~

stress components #™(X, 1), 0,"(X, 1) by 4"(X, w), 6;"(X, u), the governing equation becomes

A m
04




This equation must be supplemented by the constitutive equation(1) and the solution must satisfy
the outgoing wave (or radiation) condition at large latera distances from the load.

The boundary conditions on the faces of the laminate are
615X, X, O, ©) = -f(X,, Xp @) (4a)

6,’3(X1s X,, H, w)=0, i-1,23 (4b)
Assuming that no delamination occurs at the interfaces, the traction and displacement must be

continuous across the interfaces paralel to the X,-X, plane, i.e,

ﬁ?—l(xhxzs X3m’ w) = liim(Xl R X3m’ (.0)

65 (X X, XY, @) = 85X, X,, XS, ©)
i=1,2,3m=-2,....N

where X,"is the location of the interface between layer m and layer m-1. Then under the

assumption of initial rest, 2"(X, w), 6; (X, w) can be obtained through the introduction of

double spatial Fourier transforms, #"(X, w), ¢,"(X, w) and f,-(Xl,XQ,w) defined by

J

Wy Xy Xy ) - :{l—ff :f_:U,.'"(Kl, Ky Xy, w)e' ™" BNk, dk, (6a)
K
O 1 “fCxmopr i(K,X;+K,X,) 6b
o,.'j'.'(X], Xp Xy @) - ng-nf—wzij(lxl, K, X, w)e PR dK dK, (6b)
F(X,, X,y @) - ZlE [ [ F&, Ky @)™ ax ak, (6c)
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where K, and K, are the global wave numbersin XI and X, directions, respective y. The details
of the solution for the displacement and stress components using the global matrix formulation
introduced in Mal (1988) can be found in Lih and Mal (1995). It should be noted that the well
known precision problem at high frequencies do not occur in this method [Mal, 1988].

In this paper, we assume that the load is normal to the surface of the laminate and that
it can be separated into a time dependent function f(r) and a spatially distributed function g(X,,
X2):i.e, fi=h=0and f, = fir) g(X,, X2). Let the Fourier time transform of f(t) be f(w), and

the spatial double Fourier transform of g(X;, X2 be GX;, K,). Then

{F} = Aw)0,0,G(X,, k) (7)
where
Gk, K)=[, [ gx,, xp) ¢ N axax, )

For a point load at the origin, g(x, y) == 6(x)6(y), and G(K,, K,) = 1. For distributed
loads, G(K;,, K,) can be evaluated analytically or numer ically. In this paper two types of loads
are used in the calculations:

1) Uniform unit load distributed in a rectangular region

Consider a dynamic loading uniformly distributed over a rectangular region 2a x 2b on
the surface of the laminate (Fig. 2a). Then the normal force g(X,, X,) can be expressed as

gXp X) =1 -a<X;<agyyp<x, <p

= O, elsewhere

and




4sin(K,a)sin(K,b)

b fa i
Gk, Ky - 4 [ [* cos(K,X,)cos(K,X,) dX,dX, - Kx

2) Uniform load distributed in a circular region
If the load is uniformly distributed within a circle of radius a (Fig. 2b), then the normal
force g(X,, X,) can be expressed as
gX, X)) = 1L, X + X< @
=0, elsawhere.

and

a af2  iR(K;cos0+K,sinB)
Gk, K) "fno[ro R/

2naJ](Ka), (K + O)

na’, (X -0)
whereK = V(K;* + K,?) and J,(x) is the Bessel function of the first kind of order 1.
3) Gaussian distribution
If the loading is a Gaussian distribution on the surface of the plate (Fig. 2c), then

g(X,, X,) can reexpressed in the form

X]24X22

P 52
2

gX;, X)) = e

S

where P is a measure for the strength of the load and s is the standard deviation of the

distribution function. With a change of variable to polar coordinates R, 6, G(X,, K,) can be
expressed as

9



2
-ikRcos(8) - -

c LI 2
G(K,, K,) = Re ;% [ e S* dedR
"K22
S T
2

where J, is the Bessel function of the first kind of order O, |t remains to evaluate the
wavenumber integralsin (6) for asuite of frequencies and Fourier inversion using FFT in order
to obtain the displacement and stress time histories at a given point in the composite. Thisis
accomplished through the use of an adaptive two-dimensional numerical integration scheme

described in Ma] and Lih (1992).

IV. NUMERICAL EXAMPLES

Numerical results for the response of unidirectional and multilayered composite laminates
to different types of dynamic surface loads are presented. In all calculations the laminate is
assumed to be made up of a AS4/4501 graphite/epoxy composite; its elastic properties are given
in Table. 1. The nominal thickness of the laminate is 1 mm. The unit used for force is KN and
that for stress is GPa. Approximate results based on the classical plate theory and the shear
deformation theory are compared with the exact results, and the range of validity of the
approximate solution is determined.
The Force Time History

Three types of pulses are considered in this paper. In order to examine the nature and
extent of the numerical] y generated noise before the arrival of the source-generated disturbances

at the receiver, atime delay ? was introduced in the source function. Thistime delay results
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Table 1. Material constants of graphite- :poxy composite laminate used in the calculations

Density Cu Cy2 Cy I Css | Po ‘ fo ‘ 4,
(g/em® | (GPa) c
1578 | 16073 | 644 | 1392 | 692 | 7o7 | 0005 | 03 |0.1

in a phase shift in the frequency domain.
1) A full cycle sine pulse
The sine pulse is useful in developing NDE methods. The function fi#) and its Fourier

transform f(w) can be expressed as

A =sin@2ny1), O <t < 1

oot sin(et2) ey )
)= o ot @7 /o)
L R R
(6]

It can be shown that for 7 = 1 us the source spectrum vanishes at zero frequency, is maximum

at 1 MHz and becomes negligibly small beyond about 5 MHz.

2) A sine-sguare pulse

This type of source function often arises in impact problems. The function fiz) and its
Fourier transform f(w) can be expressed as
For 7+ = 1 us the source spectrum has a maximum at zero frequency and becomes negligibly
small beyond about 3 MHz.
3) A Gaussian Pulse
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fH) - sin¥(ntf1), O <t <1

o) - g
) = e 1 (@i

-1/4, (o - 2m/7)

(v # 2m/7)

The function f7) and its Fourier transform f(w) can expressed as

Ay - ! e}—;mtx'(t(oo
210
- o2a?
. 1 >
fw) - —;e

(o]

For o = 1 us the source spectrum has a maximum at zero frequency and becomes negligibly
small beyond about 1 MHz.

Typical frequency domain results for the kernel U, (K, O) in a1 mm [0,90], composite
laminate at 0.5 MHz frequency are shown in Fig. 4 for the exact solution, shear deformation
plate approximation, and the classical plate approximation. It is obvious that the approximate
solutions are inaccurate as was previously found in Lih and Ma (1995). The time history of
the stress component o, , for the distributed load in a circle with the sine square pul se shape for
aunidirectional composite at different locations on its top surface is shown in Fig. 5. The case
of the concentrated load with the full cycle sine pulse is shown in Fig. 6. It can be seen that
in both Figs. 5 and 6 the stress waves travel faster along 0°, and that the point source produces
higher frequency oscillations in the stresses.

The results for multilayered laminates are shown in Figs. 7 through 11. In these figures
¢ refersto the angle of propagation of the waves to the fibers in the top lamina. Fig. 7 shows

the time history of the normal displacement on the top surface of a quasi-isotropic [0, +45, 90],
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laminate subjected to the Gaussian distributed load with the full cycle sine pulse for =0 and
T = 0.5 us. It can be seen that the main pulse in the suface motion is the flexural wave and the
high frequency oscillations appear after the main pulse.  The spectra of the time histories are
plotted in Fig. 8. The peaks in the spectra are associated with the high frequency oscillations
of the time histories and they occur at frequencies corresponding to the first cut-off of the higher
mode in the dispersion curves (c. f. Mal, Yin, and Bar-Cohen, 1991). The time history and
spectra of o33 at the first interface (X, = 0.125 mm) in the quasi-isotropic laminate subjected
to the load on the square area with full cycle sine pulse are shown in Fig. 9for t,=0O and 1=
1 ps. It can be seen that the time history of ¢, consists of a pulse equal to the negative of the
source followed by highly oscillatory waves. The maximum stress at a distance of 5 mm from
the origin is about 20% of the traction at the source. ~ Furthermore, the frequency of the
oscillation is higher for field points close to 0° and 90° and decays out faster at 45°. The
calculation of 0,5 can be used to predict the delamination between the lamina. Fig. 10 shows
the spectra of Fig. 9. Asin Fig. 8, the main distinguishing feature of the spectra is the peak
at the cutoff frequencies. Fig. 11 shows the time history and spectra of o3, at the interfaces,
X, =0.25 mm and 0.75 mm, in a [0, 90],laminate subjected to a concentrated load and the full
cycle sine pulse for o = O and 7 = 1 us. It can be seen that the bottom interface under the
source is subjected to strong tensile stresses even though the loading at the top is compression,

which may cause delamination at this interface.
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V. CONCLUDING REMARKS

Theelastodynamic field produced in unidirectiona and multilayered composite laminates
due to localized dynamic surface loads have been studied in this paper. The proposed multiple
transform technique appears to work well and is able to calcul ate the displacements and stresses
for concentrated as well as distributed surface loads of arbitrary time dependence. Although the
associated numerical codes are CPU-intensive, they are much more efficient than other available
codes for the analysis of three-dimensional models of the composite laminate. The method is
expected to be useful for the prediction of failure modes of structural composites. The method
can also be used in developing NDE methods for the prediction of the waveforms produced by
point source triggers with contact type of transducers. Future work should involve parameter

studies for different stacking sequences of the lamina and various types of sources.
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Figure Captions:
Fig. 1. Geometry of the composite laminate.

Fig. 2. Surface load: (a) in arectangular area (b) in acircular area
(¢) Gaussian distribution.

Fig. 3. Time history and spectrum of source function for (a) afull cycle of sin pulse (b) a
full cycle of sin-square pulse (c) a Gaussian.

Fig. 4. Behavior of the kernel U, for a1 mm [0,90], composite laminate at frequency = 0.5
MHz.

Fig. 5. The time history of the stress 0,,in al mm unidirectional composite laminate
subjected to a uniform distributed surface load on a 1 mm radius circular region, with asine
square pulse for t,=5and7 =1 ps.

Fig. 6. The time history of the stresse,; in a1 mm unidirectional composite |aminate subject
to a point load with a sine pulse for t,=5and 7 =1ps.

Fig. 7. Thetime history of the displacement u, in al mm [0, *45 90), comPosite |aminate
subjected to a Gaussian distributed surface load with a sine pulse for b=0 and 7 =1 ys.

Fig. 8. Spectra of Fig. 7.

Fig. 9. The time history of the stress o3; in al mm [0, +45, 90], composite laminate
subjected to a uniform] y distributed surface load on a 2 x 2 mm’square with a sine pulse for
t, =0and 7 = 1 us.

Fig. 10. Spectra of Fig. 9.

Fig. 11. Thetime history of the stress ,; in a1 mm [0, 90], composite laminate subjected to
a concentrated surface load with asine square pulse forb* =Oand 7= 1 w.
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